Login: Senha: Registrar-se - Esqueci minha senha
.: Menu
Home
Artigos
Sign. dos Sonhos
Papel de Parede
Ilusões de Ótica
.: Bancos
Emoticons e Gifs
Ícones
Logos
.: Serviços
Mural de Recados
Usuários Online
Bloco de Notas
Formmail
Meu IP
.: Geradores
Gerador de Senhas
Barra de Rolagem
Recomende
Pop-up
Inverter Link
.: Canais
Apostilas
Arte/Cultura
Blog
Busca
Celular
Downloads
E-mail Grátis
Emoticons
Esportes
Filmes
Flogs
Fontes
GTA Mods
Host Grátis
Humor
Infantil
Informática
Jogos
Jogos Online
Linux
Músicas
Notícias
Offline
Redirecionadores
Sites Parceiros
Webdesigners
Webmasters
.: Na Faixa
Sobre
Contato
Recomende-nos
Termos de uso

Memória Ram

Enviado em 19/12/2007 - 03:13
Fonte: A A A A

A memória RAM é um componente essencial não apenas nos PCs, mas em qualquer tipo de computador. Por mais que exista espaço de armazenamento disponível, na forma de um HD ou memória flash, é sempre necessária uma certa quantidade de memória RAM e, naturalmente, quanto mais melhor.

Graças ao uso da memória swap, é possível rodar a maioria dos sistemas operacionais modernos com quantidades relativamente pequenas de memória. No caso do Linux, é possível inicializar uma instalação enxuta (em modo texto, com pouca coisa além do Kernel e o interpretador de comandos) com apenas 4 MB de memória. O problema é que com pouca memória o sistema fica extremamente lento, como qualquer um que já tentou usar o Windows XP ou uma distribuição Linux recente, com o Gnome ou KDE em um PC com menos de 128 MB de memória pode dizer. :)

A sigla "RAM" vem de "Random Access Memory", ou "memória de acesso aleatório", indicando a principal característica da memória RAM, que é o fato de permitir o acesso direto a qualquer um dos endereços disponíveis e de forma bastante rápida.

Ao carregar um programa, ele é lido no HD (ou outra mídia de armazenamento) e é transferido para a memória RAM, para só então ser executado pelo processador. A memória RAM oferece tempos de acesso brutalmente mais baixos que o HD e trabalha com taxas de transferência muito mais altas, mas possui a desvantagem de perder os dados armazenados quando o micro é desligado, daí a necessidade de salvar os arquivos periodicamente.

É também por causa disso que o processo de boot é refeito cada vez que você liga o micro. Durante o boot, o sistema operacional, drivers, bibliotecas e aplicativos são novamente copiados para a memória, junto com suas configurações e preferências.

A única forma de evitar repetir o demorado processo de boot é manter a memória RAM ativa, ou salvar seu conteúdo no HD, recuperando-o no próximo boot. Essas são as estratégias usadas pelas opções de suspender e hibernar, disponíveis tanto no Windows quanto em várias distribuições Linux.

Ao suspender, a maioria dos componentes do sistema são desligados, incluindo o HD, a placa de vídeo e a maior parte dos componentes da placa-mãe. Mesmo o processador entra em um estágio de baixo consumo, onde a maior parte dos componentes internos são desativados e o clock é reduzido. Praticamente, os únicos componentes que continuam realmente ativos são os módulos de memória. Graças a isso o PC acaba consumindo (geralmente) menos de 20 watts de energia e pode voltar ao estágio original muito rapidamente.

Ao hibernar, o conteúdo da memória RAM é copiado para uma área reservada do HD e o micro é desligado. Ao ligar novamente, o conteúdo da memória é restaurado e temos o sistema de volta, sem precisar passar pelo processo normal de boot. O problema da hibernação é que a restauração demora muito mais tempo, já que é necessário ler 512 MB, 1 GB ou mesmo 4 GB de dados (equivalentes à quantidade de memória RAM instalada) a partir do HD, o que muitas vezes demora mais do que um boot completo. :)

Além dos diferentes tipos de memória RAM, existem também outras tecnologias de memórias de acesso aleatório, como as SRAM e mais recentemente as MRAM. Temos ainda as onipresentes memórias Flash (que veremos em detalhes mais adiante), que concorrem com os HDs como mídia de armazenamento.

O tipo mais comum de memória RAM, aquela que compramos na forma de módulos e instalamos na placa-mãe, é chamada de DRAM, ou "dynamic RAM". Como vimos no capítulo 1, a memória DRAM passou a ser usada apenas a partir do final da década de 70, substituindo os chips de memória SRAM, que eram muito mais caros. Com o passar do tempo, as memória DRAM viraram o padrão, de forma que geralmente dizemos apenas "memória RAM" e não "memória DRAM".

Num chip de memória DRAM, cada bit é formado pelo conjunto de um transístor e um capacitor. O transístor controla a passagem da corrente elétrica, enquanto o capacitor a armazena por um curto período. Quando o capacitor contém um impulso elétrico, temos um bit 1 e quando ele está descarregado, temos um bit 0.

Quando falo em "capacitor", tenha em mente que não estamos falando em nada similar aos capacitores eletrolíticos da placa-mãe. Os "capacitores" usados nos chips de memória são extremamente pequenos e simples, basicamente dois pequenos blocos de metal ligados ao transístor, que conservam o impulso elétrico por apenas uma fração de segundo.

Para evitar a perda dos dados, a placa-mãe inclui um circuito de refresh, que é responsável por regravar o conteúdo da memória várias vezes por segundo  (a cada 64 milessegundos ou menos), algo similar ao que temos num monitor CRT, onde o canhão de elétrons do monitor precisa atualizar a imagem várias vezes por segundo para evitar que as células de fósforo percam seu brilho.

O processo de refresh atrapalha duplamente, pois consome energia (que acaba sendo transformada em calor, contribuindo para o aquecimento do micro) e torna o acesso à memória mais lento. Apesar disso, não existe muito o que fazer, pois a única solução seria passar a usar memória SRAM, que é absurdamente mais cara.

A principal diferença é que na memória SRAM cada célula é formada por 4 ou 6 transístores, em vez de apenas um. Dois deles controlam a leitura e gravação de dados, enquanto os demais formam a célula que armazena o impulso elétrico (a célula continua armazenando um único bit). As memórias SRAM são muito mais rápidas e não precisam de refresh, o que faz com que também consumam pouca energia. Além de ser usada como memória cache, a memória SRAM é muito usada em palmtops e celulares, onde o consumo elétrico é uma questão crítica.

Seria perfeitamente possível construir um PC que usasse memória SRAM como memória principal, mas o custo seria proibitivo. Foi por causa do custo que as memórias DRAM passaram a ser utilizadas em primeiro lugar.

Mesmo utilizando um único transístor por bit, os módulos de memória RAM são formados por um número assustador deles, muito mais que os processadores e outros componentes. Um módulo de memória de 1 GB, por exemplo, é formado geralmente por 8 chips de 1 gigabit cada um (8 gigabits = 1 gigabyte). Cada chip possui então mais de 1 bilhão de transístores e capacitores e o módulo inteiro acumula mais de 8 bilhões de conjuntos.

Apesar dessa brutal quantidade de transistores, os chips de memória são relativamente simples de se produzir, já que basta repetir a mesma estrutura indefinidamente. É muito diferente de um processador, que além de ser muito mais complexo, precisa ser capaz de operar a freqüências muito mais altas.

Com a evolução nas técnicas de fabricação, os módulos de memória foram ficando cada vez mais baratos com o passar das décadas. Na época dos micros 486, chegava-se a pagar 40 dólares por megabyte de memória, valor que hoje em dia compra um módulo de 512 MB (ou até mais). O problema é que os requisitos dos sistemas operacionais e aplicativos também aumentaram, quase que na mesma proporção. Enquanto o MS-DOS rodava bem com 2 ou 4 MB de memória, o Windows 95 já precisava de pelo menos 16 MB. O Windows XP (assim como a maioria das distribuições Linux atuais) não roda bem com menos de 256 MB, enquanto no Vista o ideal é usar 1 GB ou mais.

Na maioria das situações, ter uma quantidade suficiente de memória RAM instalada é mais importante que o desempenho do processador, pois sem memória RAM suficiente o sistema passa a utilizar memória swap, que é absurdamente mais lenta.

Enquanto uma seqüência de 4 leituras em um módulo de memória DDR2-800 demora cerca de 35 bilionésimos de segundo, um acesso a um setor qualquer do HD demora pelo menos 10 milésimos. A taxa de transferência nominal do mesmo módulo de memória é de 6.4 GB/s, enquanto mesmo um HD rápido, de 7200 RPM tem dificuldades para superar a marca de 60 MB/s, mesmo lendo setores seqüenciais. Ou seja, a memória RAM possui nesse caso um tempo de acesso quase 300.000 vezes menor e uma taxa de transferência contínua mais de 100 vezes maior que o HD.

Se lembrarmos que a memória RAM já é muito mais lenta que o processador (justamente por isso temos os caches L1 e L2), fica fácil perceber o quanto o uso de memória swap por falta de memória RAM física pode prejudicar o desempenho do sistema.

É fácil monitorar o uso de swap. No Windows XP ou Vista basta pressionar Ctrl+Alt+Del e acessar o gerenciador de tarefas, enquanto no Linux você pode usar o comando "free" ou um aplicativo de gerenciamento, como o ksysguard.

No caso do Windows Vista é possível usar um pendrive como memória adicional, através do ReadyBoost. Neste caso entretanto, o pendrive é usado como uma extensão da memória swap e não como um substituto da memória RAM. Como o pendrive oferece tempos de acesso muito mais baixos, ele acaba sendo mais eficiente que o HD nessa tarefa, muito embora a taxa de leitura seja geralmente mais baixa. 

Esse recurso pode ajudar em micros com pouca memória RAM e também reduzir o tempo de carregamento dos programas. É uma opção para casos em que você já tem o pendrive e procura um uso para ele, mas não espere milagres. Em se tratando de memória, não existe o que inventar: ou você procura um sistema operacional e programas mais leves, ou compra mais memória. Não dá para ficar em cima do muro. ;)



A memória RAM é usada pelo processador para armazenar os arquivos e programas que estão sendo executados, como uma espécie de mesa de trabalho. A quantidade de memória RAM disponível tem um grande efeito sobre o desempenho, já que sem memória RAM suficiente o sistema passa a usar memória swap, que é muito mais lenta. A principal característica da memória RAM é que ela é volátil, ou seja, os dados se perdem ao reiniciar o micro. É por isso que ao ligar é necessário sempre refazer todo o processo de carregamento, em que o sistema operacional e aplicativos usados são transferidos do HD para a memória, onde podem ser executados pelo processador. Os chips de memória são vendidos na forma de pentes de memória. Existem pentes de várias capacidades, e normalmente as placas possuem dois ou três encaixes disponíveis. Você pode instalar um pente de 512 MB junto com o de 256 MB que veio no micro para ter um total de 768 MB, por exemplo. Ao contrário do processador, que é extremamente complexo, os chips de memória são formados pela repetição de uma estrutura bem simples, formada por um par de um transistor e um capacitor. Um transistor solitário é capaz de processar um único bit de cada vez, e o capacitor permite armazenar a informação por um certo tempo. Essa simplicidade faz com que os pentes de memória sejam muito mais baratos que os processadores, principalmente se levarmos em conta o número de transistores. Um pente de 1 GB é geralmente composto por 8 chips, cada um deles com um total de 1024 megabits, o que equivale a 1024 milhões de transistores. Um Athlon 64 X2 tem "apenas" 233 milhões e custa bem mais caro que um pente de memória. Existem basicamente dois tipos de memória em uso: SDR e DDR. As SDR são o tipo tradicional, onde o controlador de memória realiza apenas uma leitura por ciclo, enquanto as DDR são mais rápidas, pois fazem duas leituras por ciclo. O desempenho não chega a dobrar, pois o acesso inicial continua demorando o mesmo tempo, mas melhora bastante. Os pentes de memória SDR são usados em micros antigos: Pentium II e Pentium III e os primeiros Athlons e Durons soquete A. Por não serem mais fabricados, eles são atualmente muito mais raros e caros que os DDR, algo semelhante ao que aconteceu com os antigos pentes de 72 vias, usados na época do Pentium 1. É fácil diferenciar os pentes SDR e DDR, pois os SDR possuem dois chanfros e os DDR apenas um. Essa diferença faz com que também não seja possível trocar as bolas, encaixando por engano um pente DDR numa placa-mãe que use SDR e vice-versa (a menos que você use um alicate e um martelo, mas a placa provavelmente não vai funcionar mais depois ;). Mais recentemente, temos assistido a uma nova migração, com a introdução dos pentes de memória DDR2. Neles, o barramento de acesso à memória trabalha ao dobro da freqüência dos chips de memória propriamente ditos. Isso permite que sejam realizadas duas operações de leitura por ciclo, acessando dois endereços diferentes. Como a capacidade de realizar duas transferências por ciclo introduzida nas memórias DDR foi preservada, as memórias DDR2 são capazes de realizar um total de 4 operações de leitura por ciclo, uma marca impressionante :). Existem ainda alguns ganhos secundários, como o menor consumo elétrico, útil em notebooks. Os pentes de memória DDR2 são incompatíveis com as placas mãe antigas. Eles possuem um número maior de contatos (um total de 240, contra 184 dos pentes DDR), e o chanfro central é posicionado de forma diferente, de forma que não seja possível instalá-los nas placas antigas por engano. Muitos pentes são vendidos com um dissipador metálico, que ajuda na dissipação do calor e permite que os módulos operem a freqüências mais altas. Algumas placas (geralmente modelos de baixo custo) possuem dois tipos de soquete, permitindo usar módulos SDR e DDR, DDR e DDR2 ou DDR2 e DDR3 de acordo com a conveniência, mas sem misturar os dois tipos. Elas são comuns durante os períodos de transição, quando uma tecnologia de memória é substituída por outra e podem ser uma opção interessante, já que permitem aproveitar os módulos antigos.

Fonte: www.guiadohardware.com.br

Enviado por: brunohcs

Esse artigo foi visualizado 4020 vezes

Compartilhe este artigo
facebook del.icio.us rec6 digg
Recomende este artigo a um amigo


Voltar
>> Comentários
 
Related Posts Plugin for WordPress, Blogger...
Comentar
Buscar Artigos:
.: Mods de GTA
GTA SA, VC, IV
SA - Carros
IV - Carros
Mods
GTA IV
SA - Mods Cleo
.: Saúde
Calculadora de IMC
Peso Ideal
Artigos de Saúde
.: Jogos Online
Ação
Aventura
Cassino
Classicos
Colorir
Corrida
Educativos
Esporte
Estrategia
Infantil
Luta
Meninas
Nave
Tiro
Outros
Adulto
Top Jogos
.: Parceiros
Mural de Recados Grátis
Papel de Parede
Show Moto
Web Visual
.: Nossos Números
Artigos: 930
Categorias: 50
Comentarios: 1863
Usuarios: 26634
Blocos de Nota: 87
Canais: 169

website monitoring service
eXTReMe Tracker
Na Faixa.net - Todos os direitos reservados. 12/2003 - 04/2024
Leia nossos Termos de Uso - Política de Privacidade
Desenvolvido por Web Visual
Crie seu Site - Papel de Parede Grátis - Show Moto - Mural de Recados Grátis - Dicas10